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Abstract

We tackle the challenge of concurrent reconstruction at the
part level with the RGB appearance and estimation of mo-
tion parameters for building digital twins of articulated ob-
jects using the 3D Gaussian Splatting (3D-GS) method.
With two distinct sets of multi-view imagery, each depict-
ing an object in separate static articulation configurations,
we reconstruct the articulated object in 3D Gaussian rep-
resentations with both appearance and geometry informa-
tion at the same time. Our approach decoupled multiple
highly interdependent parameters through a multi-step op-
timization process, thereby achieving a stable optimization
procedure and high-quality outcomes. We introduce Artic-
ulatedGS, a self-supervised, comprehensive framework that
autonomously learns to model shapes and appearances at
the part level and synchronizes the optimization of motion
parameters, all without reliance on 3D supervision, mo-
tion cues, or semantic labels. Our experimental results
demonstrate that, among comparable methodologies, our
approach has achieved optimal outcomes in terms of part
segmentation accuracy, motion estimation accuracy, and
visual quality. The code will be made publicly available
at our website https://guojunfu-tech.github.
io/articulatedGS-io/

1. Introduction

Articulated objects, such as laptops, ovens, and drawers,
are a part of our daily life. Building the digital twin
of an articulated object with accurate reconstruction of
and fine-grained analysis often plays an important role in
robotics [24, 27, 31, 47], animation [19, 44], and simula-
tion [41, 45]. Moreover, it is also desirable to equip the dig-
ital twins with color appearance to facilitate downstream ap-
plications such as training sim-to-real transferable embod-
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Figure 1. ArticulatedGS is a self-supervised modeling and rea-
soning pipeline to reconstruct the articulated objects using 3D
Gaussian Splatting.

ied AI [1, 34, 35]. Consequently, the capturing and recon-
struction of shape geometry, visual appearance, and articu-
lation parameters is indispensable in building accurate and
functional digital twins of articulated objects.

The problem of modeling high-fidelity digital twins of
articulated objects is receiving increasing attention in re-
cent years [10, 21, 22, 33]. Most of the previous works [10,
16, 21] are concentrated on the regeneration or construc-
tion of 3D geometrical representation of articulated objects,
which may involve the estimation of articulation parame-
ters or functionalities to animate the objects into different
articulation states. The result is usually a mesh-based rep-
resentation of articulated objects with relatively low geo-
metric fidelity and visual realism. Moreover, the reliance
on supervised learning, which typically consumes a large
3D dataset with articulation annotation, also limits the gen-
eralizability to unseen object categories. To our knowledge,
the only self-supervised work that takes RGB observations
as input is PARIS [21]. PARIS adopts the neural radiance
field (NeRF) as an intermediate representation and outputs a
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mesh with compromised accuracy of geometry and appear-
ance. Additionally, it exhibits instability and suboptimality
issues in the optimization process.

Recently, there has also been a massive success of 3D
Gaussian Splatting (3D-GS) [12] in 3D scene learning and
novel view synthesis as well as extensions to various appli-
cations such as 3D reconstruction [2, 17, 32] and dynamic
scene rendering [3, 6]. 3D-GS requires only RGB images as
input and enables rapid scene reconstruction with real-time
and realistic rendering. The reconstructed scene is com-
posed of numerous Gaussians densely distributed around
the object’s surface, thereby allowing for modeling rich ge-
ometric details. Recent works [25, 42, 43] make it possible
to interact with digital twins represented with 3D-GS for
physically meaningful simulation and manipulation. The
fast and realistic rendering of 3D-GS also benefits learning
in simulation. For those purposes, what has been missing
is to reconstruct digital twins of articulated objects with the
representation of 3D Gaussians. In this work, we aim to
take the RGB observations of two states of a given articu-
lated object as an input and reconstruct a 3D-GS model of
the object with geometry, appearance and mobility.

Optimizing for object geometry (masks of movable
parts), appearance, and motion parameters simultaneously
from only two-view inputs is a highly ill-posed problem.
This is because the three terms are deeply intertwined. The
object’s movable parts, undergoing rigid body transforma-
tions based on motion parameters, can greatly impact on
the learning of part geometry and visual appearance. The
same goes for the opposite way; the optimization of the
movable mask and the motion parameters can be signifi-
cantly affected by rendering quality. To that end, we pro-
pose to decouple the optimization process into multiple sub-
processes. We first reconstruct the 3D-GS model of the
start state. We then train a network to estimate a deforma-
tion flow for moving the movable Gaussians and initialize
the geometry structure (movable mask) for the end state.
Based on the initial movable mask, we leverage the geome-
try structure to supervise the learning of the motion param-
eters. At last, we jointly update the appearance, motion pa-
rameters, and movable mask to obtain the final reconstruc-
tion of the articulated object.

Evaluation on an extended dataset from the previous
works [7, 21] demonstrates that our method achieves the
state-of-the-art performance of visual quality, motion pa-
rameter estimation, and part segmentation. Our method also
shows enhanced efficiency in model training and more sta-
bility of the optimization process compared to the previous
self-supervision methods. Our work makes the following
contributions:
• A 3D Gaussian model for building digital twins of articu-

lated objects in a self-supervised fashion;
• A progressive optimization scheme to the challenging op-

timization task with efficiency and stability;
• New state-of-the-art results of reconstruction quality, mo-

tion estimation, and visual quality for articulated objects.

2. Related work
Articulated Modeling. The primary objective of articu-
lated object reconstruction is to accurately recover the three-
dimensional (3D) geometry of articulated entities. Pekelny
and Gotsman [29] introduced one of the pioneering works in
this area, which focuses on reconstructing the surface from
a sequence of point clouds. A-SDF [28] represents an in-
novative approach, the inaugural study to reconstruct artic-
ulated objects from signed distance fields (SDFs) derived
from a solitary snapshot. This technique permits the de-
formation of objects into any conceivable articulation state.
While echoing the goals of A-SDF, the work of [38] di-
verges in their approach by utilizing multi-view RGB im-
ages for reconstruction purposes. CARTO [8] and [15] ad-
vances this concept further by incorporating a single stereo
RGB image as input. A common limitation across these
three studies is their tendency to reconstruct the articulated
object in its entirety as a unified surface. To counteract this
limitation, CLANeRF [36], Ditto [10], and PARIS [21] have
each developed methodologies that reconstruct articulated
objects at the part level. Both CLANeRF and PARIS uti-
lize multi-view RGB images as their input, whereas Ditto
processes point cloud data. To overcome the instability
of the optimization process of PARIS, the DTA [39] and
ArtGS[23] take depth as extra information to achieve the
same goal but higher performance. This work utilizes mul-
tiple modules and incorporates prior knowledge such as im-
age feature extraction, but the output of this method does
not inlcude appearance. In contrast, our approach requires
only RGB data and employs a fully self-supervised method,
with an optimization time that is approximately one-third of
theirs, yet still achieves similar quality results. In our work,
we adopt the same RGB series input as PARIS and solve the
stabilization problem while yielding a more accurate result
with higher visualization quality. Moreover, the Gaussian
representation we utilize can, compared to PARIS, quite
naturally encompass both appearance and geometry char-
acteristics. For more complete coverage of works in this
field, please see the recent surveys [22].

Deformable 3D Gaussians. Gaussian Splatting [12] of-
fers improved rendering quality and speed for radiance
fields. Several concurrent works have extended 3D-GS
from representing static scenes to deformation areas. [4,
11, 14, 20, 26, 40, 46] use the deformation field to represent
the GS deformation with time varies. Given the RGB obser-
vations at dense time frames, the deformation field takes the
position of each GS and the time frame and predicts the de-
formation of each GS in position, rotation, and scaling. The
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Figure 2. A pipeline overview of our self-supervised 3D Articulated Objects modeling method. (a) Given the sets of RGB observation
sequence of two states I0 and I1 of an arbitrary articulated object, we first reconstruct the start state using 3D Gaussian Splatting method
into the initial Gaussians G = {gi}Ni=1 . (b) Each Gaussian gi is then fed into DeformNet, where its Gaussian kernel’s 3D coordinates
xi is input to predict its individual rigid motion {δxi, δri} within a local coordinate system, with the end state images I1 serving as
visual supervision. (c) Based on the transformation predicted by DeformNet, we classify the displacements after regularization to obtain
an initial moving Gaussian, and then apply the motion parameters to this moving Gaussian to perform a global rigid transformation,
which is supervised by I1, ultimately resulting in a motion category and converged motion parameters. (d) Subsequently, we optimize the
preprocessed Gaussians, motion parameters, and the movable mask in tandem to achieve the final results.

work of [5] introduced a mesh-based approach to combine
the mesh with 3D Gaussians, leveraging the mesh to guide
the splitting process and enhancing the overall quality of the
learned GS. However, these methods are highly dependent
on the density of frames; when frames are sparse, the Gaus-
sian motion process between frames cannot be accurately
predicted. In our work, the movable Gaussians deform to-
gether with the motion parameters, remaining visually and
geometrically consistent between the two states.

Another line of works focuses on using 3D-GS to model
the organic articulated objects, such as human [11, 13, 17],
body parts [2, 11, 30], and animals [17]. The motion al-
lowed for these objects is usually structurally complex, with
a relatively large number of joints varied in the topology of
connections and degrees of freedom. However, the kine-
matic structure is relatively fixed and need to be predefined
for a specific species.

3. Method
3.1. Problem Statement
In this work, we take two sets of multi-view RGB images
I0 = {Ii0} and I1 = {Ii1}, together with the corresponding
camera poses, as input to represent the start and end states
of the target articulated object, respectively. Our goal is to
use a set of 3D Gaussians associated with part segmenta-
tion and articulated motion parameters to reconstruct such

an articulated object.
To formally define the problem, we first explain how

the part-aware 3D Gaussians and the motion parameters are
represented, and then define the optimization objective.

Part-aware 3D Gaussian Representation. In the default
setting, we assume that there is only one movable part dur-
ing the movement between two states, and the rest of the
object is unmovable, and use a movable mask to distin-
guish those two types of Gaussians. In more details, the
classical 3D Gaussian can be represented as G = {gi =
(xi, ri, si, σi, shi)|i = 1...N}, where each Gaussian g has
a center position x, the rotation matrix represented by a
quaternion r ∈ SO(3), S as a scaling matrix represented by
a 3D vector s, and view-dependent appearance represented
by spherical harmonics (SH) parameters sh. In our method,
for each gi, we add an extra element mi to present the mov-
able mask such that the gi is a movable part if mi ̸= 0.
Therefore, our part-ware 3D Gaussian representation G can
be denoted as G = {Gm,Gu}, where Gm = {gi|mi ̸= 0}
and Gu represents the complement.

Articulated Motion Representation. Following previ-
ous works[10, 18, 21], we consider two types of joints: pris-
matic and revolute. The prismatic joint is parameterized by
a 3D translation axis a ∈ R3, ||a|| = 1 and a move distance



d along this axis; And the revolute joint is parameterized
by a 3D rotation orientation axis l ∈ R3, ||l|| = 1, a pivot
p ∈ R3 that locates the axis in the world coordinates, and
the rotate angle θ.

With the motion parameters above, we can construct
rigid-body transformation functions for revolute joint on
each Gaussian by (x̂, r̂) = fl,p,θ(x, r), and prismatic joint,
x̂ = fa,d(x), allowing each Gaussian g(x, r) to calculate
its post-motion ĝ(x̂, r̂). In this way, the transformed set of
Gaussians can be represented as

Ĝ = {Gu, f(Gm)}, (1)

where f ∈ {fl,p,θ, fa,d}.

Optimization formulation. With the part-aware Gaus-
sians and motion parameters, our goal is to optimize them
all together to achieve high-fidelity rendering of images
similar to the input RGB images across different angles and
states. Thus, our optimization problem can be formulated
as

argmin
G,f

∑
i

Lapp

(
Ii0(G)− Ii0

)
+
∑
j

Lapp

(
Ij1(Ĝ)− Ij1

)
,

(2)
where I(G) represents the image rasterized by Gaussian G
with the camera extrinsic and intrinsic of image I , and Lapp

is the same appearance loss function used in the 3D Gaus-
sian Splatting method [12]:

Lapp = (1− λ)L1 + λLD SSIM . (3)

3.2. Overview
Given the complex problem formulated in Eq. (2), opti-
mizing the motion parameters, the movable mask, and the
Gaussian representations concurrently can result in a ten-
dency to settle for a local optimum or to face computational
failure. To address this, we introduce a novel process that
methodically tackles the overarching objective in a step-
wise fashion, each step aimed at securing initial parameter
estimates that are proximal to the ground truth, thus enhanc-
ing the likelihood of reaching the optimal solution.

The pipeline of our method is illustrated in Fig. 2. We
first train a set of static Gaussians G with only viewpoints
I0 from the start frames. Then, we use a deformation net-
work to predict each Gaussian’s translation and rotation, su-
pervised by I1. With the deformed Gaussians, we classify
the movements and obtain the initial movable Gaussians Gm

and unmovable Gaussians Gu. After that, We optimize the
motion parameters in SE(3) by casting the rigid movement
to Gm. During this step, we classify the motion type ac-
cording to the motion parameters. With the pre-processed
motion parameters and movable mask, we jointly optimize
the Gaussians’ representation, the movable mask, and the
motion parameters to obtain the final result. Below we will
explain the details of each step.
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Figure 3. The process diagram of DeformNet illustrates our ap-
proach where a neural network is utilized to predict the rigid trans-
formation of a Gaussian. The input consists of the kernel’s posi-
tions xi for each Gaussian gi, and the output is the displacement
and relative rotation to the end state. In addition to visual super-
vision by I1, we also impose geometrical supervision Larap that
maintains local consistency among the local Gaussians.

3.3. Isolated Deformation Prediction
Fig. 3 gives an illustration of our isolated deformation Pro-
cess. With the trained Gaussians of start frames, we do not
optimize the motion parameters directly, but use a network
fθ to predict the deformation field of the Gaussians. The
deformation field takes the position of each 3D Gaussian
xi as input, and output δxi and δri, which represent the
translation and rotation of Gaussian gi:

(δxi, δri) = fθ(sg(xi)). (4)

Note that as we do not want to change the origin location
of each Gaussian but only predict the deformation field,
we add a stop-gradient operation sg(·) to xi. The network
architecture is relatively simple, which consists of a four-
layer one-dimensional Convolutional Network (1D CNN)
connected to a four-layer Multi-Layer Perceptron (MLP).

The deformed 3D Gaussians Ĝ = {ĝi =
(x̂i, r̂i, ...)|x̂i = xi + δxi, r̂i = ri + δri} is then
put into the differential Gaussian rasterization pipeline to
get the rendered image Î = I(Ĝ). The appearance loss
Lapp (defined in Eq. (3)) is then computed between the
rendered image Î and the target image I1.

Moreover, with the prior that the desired deformation
should be part-wise rigid, we add an extra as-rigid-as-
possible (ARAP) loss Larap as in previous works [9, 26]
to encourage the motion to be locally rigid:

Larap =
1

k|S|
∑
i∈S

∑
j∈knni,k

Li,j
arap, (5)

Li,j
arap = ωi,j ||(xj − xi)−RiR̂

−1
i (x̂j − x̂i)||2. (6)



Here, we restrict the set of Gaussians j to be the k-nearest-
neighbor of i (k = 20), and the weight factor for the Gaus-
sian pair is defined as:

ωi,j = exp
(
− λω||xj − xi||22

)
(7)

where λω = 20 in our experiments.
Therefore, the final loss function is the combination of

the appearance loss and the ARAP loss:

Ldeform = Lapp + λarapLarap, (8)

where λarap = 1 in our experiments.

3.4. Motion Parameter Optimization
Once we obtain the deformation field of all the Gaussians,
we can first roughly identify the movable part and estimate
the motion parameters based on their deformations. Note
that the movable part doesn’t need to be very accurate at
this step, as the estimated motion parameters could be fur-
ther refined in the following joint optimization, and our goal
here is to get an good approximation as initialization for
joint optimization.

To identify the movable part, we first normalize the dis-
placement ||δx||2 within 0 and 1, and take the Gaussians
with δx ≥ τ as the movable Gaussians Gm. Based on our
observations, selecting a lower threshold τ often results in
the inclusion of stationary Gaussians, which can lead to sub-
optimal outcomes when optimizing motion parameters later
on. Thus, we tend to set a higher threshold to get a partial
set of movable parts with higher confidence, which is usu-
ally already enough for motion parameter prediction for the
entire part. We set τ = 0.3 in our experiments to classify
the movable Gaussians.

With the movable Gaussians Gm, we proceed to optimize
the motion parameters by applying a global rigid transfor-
mation to Gm. We observed that when fitting a prismatic
motion with revolute motion parameters, the pivot of the
revolute parameters typically moves a considerable distance
to ensure that the movable Gaussians undergo minimal rota-
tion during the motion. Therefore, we initiate with optimiz-
ing the revolute parameters. The motion is considered to be
prismatic if the pivot ||p|| > R, where R = 1 in our exper-
iments, and we will reinitialize the optimization parameters
and the motion function to align with the prismatic motion.

We utilize both appearance and geometric supervision to
refine the motion parameters:

Lparam = Lapp + Lgeo. (9)

For the appearance, we maintain the use of the end frame
for supervision, and thus Lapp is the same as the one used
for the Deformation Network. For the geometric supervi-
sion, we preserve the Gaussian points that have undergone
transformation by the Deformation Network and calculate
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Figure 4. An example of modeling a multi-part articulated object.
Taking the target object in multiple states, we update the Gaussians
sequentially to reconstruct the final object with multiple sets of
movable parts.

the Chamfer distance between the coordinates of these two
sets of points to provide geometric guidance. Therefore, the
geometric loss is defined as:

Lgeo = dc
(
f(x),x+ δx

)
, f ∈ {fl,p,θ, fa,d}, (10)

where dc(·, ·) denotes the chamfer distance.

3.5. Final Joint Optimization
With the good initialization of 3D Gaussians, movable
mask, and the motion parameters, now we are able to per-
form a joint optimization to find optimal solution.

Given that we already obtained quite accurate motion pa-
rameters in the previous step, we employ a lower threshold
τ = 0.1 to reclassify the Gaussians to get a more strict
movable mask for the joint optimization. With this mov-
able mask, we divide the Gaussians into movable part Gm

and unmovable part Gu. We apply the motion parameters
obtained earlier to the movable part to reach its correspond-
ing end state, while for the unmovable part, the start and
end states are the same. Note that during the densifica-
tion and pruning processes of the Gaussians, inaccuracies in
the classification within two masks can be treated as noise
within the Gaussians. This noise will be automatically up-
dated alongside the Gaussians’ densification and pruning
processes, thereby achieving an accurate movable mask.
We employ multi-perspective images from both states to su-
pervise the rendering results before and after the movable
part’s movement, with the expectation that the loss values
for each state will eventually converge to the same magni-
tude.

3.6. Multi-Part Object Modeling
To extend our method to reconstruct objects with multiple
moving parts, we dissect the entire procedure into multiple
sub-processes of single-object modeling and address each
in turn, as shown in Fig. 4.



Simulation Real
Foldchair Fridge Laptop* Oven* Scissor Stapler USB Washer Blade Storage* Fridge Storage*

Motion

Ang Err

Ditto 89.35 89.30 3.12 0.96 4.50 89.86 89.77 89.51 79.54 6.32 1.71 5.88
PARIS 7.90 9.19 0.02 0.04 3.92 0.73 0.13 25.18 15.18 0.03 1.64 43.13
Vanilla 87.47 14.08 11.65 44.95 89.80 84.85 75.50 84.69 88.76 83.17 82.99 78.35
Ours 0.02 0.04 0.07 0.04 0.20 0.03 0.30 0.06 1.99 0.05 5.41 41.52

Pos Err

Ditto 3.770 1.020 0.010 0.130 5.700 0.200 5.410 0.660 - - 1.840 -
PARIS 0.374 0.298 0.010 0.003 2.154 2.258 2.367 1.502 - - 0.340 -
Vanilla 0.036 0.503 0.265 0.055 0.027 0.127 0.013 0.030 - - 0.084 -
Ours 0.003 0.001 0.003 0.007 0.002 0.000 0.000 0.004 - - 0.057 -

Geo Dist

Ditto 99.36 F 5.18 2.09 19.28 56.61 80.60 55.72 F 0.09 8.43 0.38
PARIS 131.82 24.64 0.03 0.04 120.61 110.71 64.91 60.62 0.54 0.14 2.16 0.56
Vanilla 80.00 59.49 37.92 29.97 40.00 40.05 44.77 30.00 48.41 32.55 35.45 48.25
Ours 0.05 0.18 0.55 0.61 0.15 0.06 0.33 0.34 0.09 0.30 9.38 0.41

Geometry

CD-s

Ditto 33.79 3.05 0.25 2.52 39.07 41.64 2.64 10.32 46.90 9.18 47.01 16.09
PARIS 9.12 3.73 0.45 12.85 1.83 1.96 2.58 25.19 1.33 12.80 42.57 54.54
Vanilla 308.39 8.81 389.67 F F 100.23 88.12 312.80 F 218.01 F F
Ours 0.33 0.90 2.96 2.06 0.34 1.68 1.02 6.17 0.69 2.96 37.01 50.12

CD-d

Ditto 141.11 0.99 0.19 0.94 20.68 31.21 15.88 12.89 195.93 2.20 50.60 20.35
PARIS 8.79 7.76 0.49 28.51 46.69 19.36 5.53 178.39 25.29 76.75 45.66 864.82
Vanilla 189.26 254.50 159.95 717.63 90.31 116.08 88.12 512.02 102.91 854.10 923.22 965.15
Ours 0.32 0.59 6.23 0.80 0.41 1.14 0.90 0.17 4.75 0.71 43.00 730.45

CD-w

Ditto 6.80 2.16 0.31 2.51 1.70 2.38 2.09 7.29 42.04 3.91 6.50 14.08
PARIS 1.90 2.53 0.50 1.94 10.20 3.60 2.31 24.71 0.44 8.34 22.98 63.35
Vanilla 5.91 9.99 4.73 2.80 7.63 33.34 8.74 8.37 5.52 3.21 30.44 78.65
Ours 0.36 0.85 0.87 1.91 0.33 1.42 0.93 5.64 0.34 2.09 13.25 55.57

Table 1. The results on the PARIS dataset, encompassing both synthetic and real data, are presented. Objects marked with a ‘*’ are the
categories that Ditto [10] has been trained to recognize. Occasionally, Ditto may provide incorrect motion type predictions, which are
indicated with an ‘F’ for joint state and a ‘*’ for joint axis or position. There is a chance that Vanilla may fail to successfully segment the
object, classifying the entire object as part of the movable category, which we also mark with an ‘F’.

Throughout the reconstruction process, we consistently
maintain the same set of Gaussians. We align the start
state of the subsequent sub-process with one of the states
from the preceding sub-process, ensuring that only an ad-
ditional moving component is introduced in the new sub-
process. Before entering the next sub-process, we config-
ure the movable components within the existing Gaussian
to the starting state of the subsequent sub-process using the
motion parameters derived from the previous one. Within
each sub-process, we employ a new identifier to label the
movable mask while concurrently optimizing the unmov-
able Gaussians to update the new movable mask. Given that
our movable mask is capable of being simultaneously den-
sified and pruned with the Gaussian, the Gaussians marked
by the movable mask from the previous step can also be op-
timized in the new sub-process. Furthermore, there is an
advantage in that for the new sub-process, we can bypass
the step of pre-training the initial Gaussian and proceed di-
rectly to the deformation network.

4. Results and Evaluation
4.1. Experimental Setup
Baselines. We compare our method to most related SOTA
works Ditto [10] and PARIS [21]. Note that we fol-
low PARIS’s protocol and report the results derived from
Ditto’s released pre-trained model, which was trained on

four object categories from the Shape2Motion dataset [37].
Moreover, we have also constructed a trivial reconstruction
method based on our framework, denoted as Vanilla. Rather
than employing our multi-step optimization process, we si-
multaneously optimize all parameters. We directly initialize
two sets of Gaussians, one representing the static part and
the other the mobile part. To simplify the problem, we also
assume that the type of motion is known.

Evaluation metrics. To evaluate the efficacy of our
methodology, we have designed a comparative experimen-
tal framework that spans three critical aspects: reasoning of
motion, precision of geometry, and visual quality of novel
views, as in previous works [21, 39]. The details of all the
metrics are provided in the supplementary material. More-
over, we compare our approach’s computational efficiency
and memory utilization against PARIS, which is also a self-
supervised method like ours.

4.2. Comparison to Baselines
Table 1 and Table 2 show results on the PARIS object
dataset, including synthetic and real instances, summarized
over 10 trials. Ditto’s performance is contingent upon
its exposure to object forms and structural templates ac-
quired from the training dataset, which includes categories
such as laptops, ovens, and storage units. The algorithm
demonstrates proficiency in reconstructing shapes for ob-



Metrics Methods Foldchair Fridge Laptop Oven Scissor Stapler USB Washer Blade Storage

PSNR-s (↑)
PARIS 37.95 36.45 36.59 35.59 37.64 33.84 37.58 37.22 38.28 35.02
Vanilla 31.49 23.21 22.45 24.16 21.08 22.26 21.99 26.65 23.87 29.65
Ours 41.68 36.89 37.08 36.60 40.99 43.36 41.09 40.63 41.31 38.65

PSNR-e (↑)
PARIS 38.45 33.68 34.24 34.33 38.15 40.19 36.13 37.75 37.13 36.41
Vanilla 31.42 25.44 22.56 23.38 21.07 22.75 23.11 26.09 27.76 29.65
Ours 42.83 37.63 35.37 36.72 41.13 42.84 42.27 39.98 41.36 38.08

SSIM-s (↑)
PARIS 0.956 0.968 0.987 0.966 0.953 0.957 0.979 0.970 0.988 0.961
Vanilla 0.949 0.938 0.936 0.954 0.961 0.964 0.926 0.979 0.940 0.952
Ours 0.980 0.987 0.988 0.984 0.995 0.996 0.993 0.993 0.996 0.976

SSIM-e (↑)
PARIS 0.955 0.965 0.984 0.970 0.954 0.956 0.980 0.972 0.987 0.965
Vanilla 0.943 0.948 0.924 0.945 0.933 0.967 0.931 0.980 0.947 0.950
Ours 0.983 0.989 0.986 0.984 0.995 0.995 0.994 0.992 0.996 0.975

LPIPS-s (↓)
PARIS 0.062 0.038 0.047 0.070 0.067 0.064 0.070 0.020 0.008 0.084
Vanilla 0.084 0.083 0.083 0.081 0.083 0.081 0.087 0.084 0.081 0.114
Ours 0.056 0.039 0.036 0.040 0.012 0.008 0.019 0.021 0.008 0.081

LPIPS-e (↓)
PARIS 0.061 0.039 0.047 0.044 0.016 0.021 0.027 0.020 0.009 0.083
Vanilla 0.094 0.073 0.090 0.073 0.067 0.051 0.068 0.037 0.085 0.124
Ours 0.059 0.033 0.031 0.039 0.012 0.009 0.017 0.023 0.007 0.087

Table 2. Comparison of visual quality on the PARIS dataset, where (-s) and (-e) denote the start and end states.

Start State End State Ours PARIS Vanilla

Figure 5. Qualitative results of part segmentation and motion esti-
mation for some of the synthetic objects derived from the PARIS
dataset.

jects that fall within its training purview. PARIS, on the
other hand, experiences significant fluctuations in its per-
formance across various trials. Although it occasionally
achieves commendable shape reconstruction, it also suffers
from occasional catastrophic failures. These inconsisten-
cies result in a markedly inferior overall performance in
both the reconstruction of shape and the delineation of ob-
ject articulation. Our approach demonstrates resilience to
varying initial conditions and consistently delivers precise
reconstructions of both shape and articulation throughout
multiple iterations.

Figure 5 shows some representative results of various
methods in part-segmentation and motion estimation. We
have visualized each of our Gaussian movable masks in the
form of point clouds, which allows for a more intuitive ob-
servation of the accuracy of our method in segmentation and
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Figure 6. Illustration of unseen states inference.

estimation. Figure 6 illustrates the predicted articulation se-
quence based on the reconstructions obtained by different
methods. PARIS struggles to accurately estimate motion
parameters for certain objects. Even when the segmentation
results are close to correct, the motion process still deviates
from the actual outcome. We also added the Deformable GS
(DGS) [46], a recent and pioneering 4D Gaussian work, for
visual comparison. Due to the sparsity of the input temporal
states, DGS can only reconstruct the appearance of the two
input states with relative accuracy. It lacks prior knowledge
of articulated motion and thus cannot infer the actual trans-
formation process between the two states. We also created
our own datasets for comparative analysis. As shown in
Figure 7, our method demonstrates superior results across a
greater variety of objects compared to previous works, and
more results can be found in the supplementary material.



Start State End State Results

GT Ours PARIS GT Ours PARIS GT Ours PARIS

Figure 7. Illustration of the effects of applying our method and the PARIS algorithm to our dataset.

Real-World Object Start State End State Results

Ours PARIS Ours PARIS Ours PARIS

Figure 8. Illustrations of our method applied to the reconstruction results of real-world objects.

Note that our method on real objects has not achieved
consistently the best performance for all metrics in Table 1.
That is because, in the PARIS dataset, the real-world ob-
ject masks have various imperfections at the edges, such
as missing parts of the object or mistakenly including por-
tions of the background as part of the object. Additionally,
obtaining the ground truth for motion and segmentation of
real-world objects is also quite peculiar, as manual annota-
tion of motion and segmentation can easily introduce errors
in the ground truth. Consequently, using it is not entirely
effective for quantitative evaluation. To demonstrate the ef-
fectiveness of our method in reconstructing real objects, we
scanned multiple objects and applied our method for digital-
twin modeling, as shown in Figure 1 and Figure 8.

For additional visual results, please refer to the supple-
mentary materials.

4.3. Ablation Studies
The “Vanilla” baseline in Table 1, Table 2 and Figure 5
refers to the framework of our method without the progres-
sive optimization process. The results demonstrate that the
visual similarity between the initial and final states is pre-
served even after the removal of our progressive optimiza-
tion. Nonetheless, part segmentation tends to optimize di-
rectly to a scenario where all Gaussians are consolidated

into a single category. Consequently, the motion parame-
ters that are learned result in a motion that is nearly static.

5. Conclusion

In this work, we introduce ArticulatedGS, a self-supervised
framework designed to build digital twins of articulated
objects using 3D Gaussian Splatting. Utilizing two dis-
tinct sets of multi-view images, each depicting an object
in separate static articulation configurations, we reconstruct
the articulated object in 3D Gaussian representations, in-
tegrating both appearance and mobility information simul-
taneously. Our method adeptly disentangles a multitude
of highly interrelated parameters through a sophisticated
multi-step optimization process. This approach not only en-
sures a stable and reliable optimization procedure but also
delivers high-fidelity results. These outcomes are crucial
for the precise depiction of articulated objects within dig-
ital twins, ensuring that they are accurately and realisti-
cally represented. Our approach also has certain limitations,
such as the requirement for world coordinate alignment be-
tween two states, and corresponding areas under two differ-
ent states should have similar lighting effects. More detailed
analysis can be found in the supplementary material.
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