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1. Experiment Details

Implementation details. Our implementation is primar-
ily based on PyTorch framework[6] and tested in a single
RTX3090GPU. We move on to the next optimization stage
when the loss value does not decline.

During the reconstruction process, our method requires
5,000 steps for the initialization of Gaussian, 10,000 steps
for the isolated-deformation step, 3,000 steps for optimizing
motion parameters, and finally, 10,000 steps for the joint
optimization step, with the total time ranging from 9 to 12
minutes. In contrast, PARIS requires about 20 minutes to
perform 30,000 steps of optimization.

Details and analysis on our real-world results. We ac-
knowledge that our method, similar to the classic 3DGS,
requires relatively accurate camera poses. However, this
requirement can be mitigated if a more advanced variant
of 3DGS, specifically designed to enhance robustness, is
employed. For camera pose estimation, we indeed used
COLMAP, but it struggled with surfaces that had high glare
or low texture. To enhance its performance in these chal-
lenging areas, we added QR codes to the surfaces.

1.1. Dataset
Synthetic Datasets. Building on the work of the PARIS
algorithm, we employed ten virtual articulated objects from
the PartNet-Mobility dataset [1] for our analysis, each state
has 100 vantage points that survey the upper hemisphere of
the object as the training data and 50 novel views for evalu-
ation. Building upon this foundation, we have expanded our
dataset to include an additional seven categories of objects
to further validate the efficacy of the algorithm. Following
this, we harness the capabilities of Blender[4] to generate
RGB visual representations and ascertain the camera pa-
rameters and the precise boundaries of the objects within
the images, which are essential for compiling our training
data.

1.2. Evaluation Metrics
To evaluate the efficacy of our methodology, we have de-
signed a comparative experimental framework that spans
three critical aspects: reasoning of motion, precision of ge-
ometry, and visual quality of novel views. In the end, we
also undertake a comparative assessment of the computa-
tional efficiency and memory utilization of our approach
against PARIS, which is also a self-supervised technique.

Motion Reasoning. Following the previous works [2, 3,
8], we evaluate the estimated articulation model with the
following metrics:
• Axis Ang Err(◦). The angular error of the predicted joint

axis for both revolute and prismatic joints.
• Axis Pos Err (m). The minimum distance between the

predicted and ground-truth joint axis for revolute joints.
• Geo dist (◦ or m). The geodesic distance error of pre-

dicted rotations for revolute joints, or Euclidean distance
error of translations for prismatic joints.

Object and Part Geometry. We sample 10K points uni-
formly on the ground truth and predicted meshes of the
baselines. In our method, we sample 10K Gaussian ker-
nels as the point cloud randomly. To evaluate the geome-
try quality, we use bi-directional Chamfer-l1 distance (CD),
and compare CD-w (mm) for the whole object, CD-s (mm)
for the static part and CD-m (mm) for movable parts.

Novel View Synthesis. In assessing the fidelity of the
appearance model, we quantify the performance using the
Peak Signal-to-Noise Ratio (PSNR), the Structural Simi-
larity Index (SSIM), and Learned Perceptual Image Patch
Similarity (LPIPS(VGG)) for images rendered from novel
perspectives. For each object instance, we generate and ren-
der 50 unique viewpoints per state, subsequently computing
the mean values to ascertain the overall quality.

1.3. Comparisons details
More visual results. Figure 1 shows the results of various
methods in part-segmentation and motion estimation for all
objects in the PARIS dataset. We also generated additional
data across five categories for comparison, as shown in Fig-
ure 2. Multiple examples demonstrate that in the results of
the PARIS method, part segmentation, motion estimation,
and appearance have all converged to local optima, leading
to a significant discrepancy from the ground truth. It can be
observed that our method outperforms the PARIS method in
terms of segmentation accuracy and reconstruction quality
on these new datasets. Figure 3 shows the reconstruction
results of our method and PARIS’s. From the visualization
results, it can be observed that our method achieves higher
reconstruction quality and more precise articulation infor-
mation estimation results.

Figure4 illustrates more predicted articulation sequence
based on the reconstructions obtained by different methods.



Simulation Real-world
Foldchair Fridge Laptop Oven Scissor Stapler USB Washer Blade Storage Fridge Storage

Motion

Ang Err DTA 0.03 0.07 0.06 0.22 0.11 0.06 0.11 0.43 0.27 0.06 2.10 18.11
Ours 0.02 0.04 0.07 0.04 0.20 0.03 0.30 0.06 1.99 0.05 5.41 41.52

Pos Err DTA 0.01 0.01 0.00 0.01 0.02 0.01 0.00 0.01 - - 0.57 -
Ours 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 - - 0.06 -

Geo Dist DTA 0.16 0.09 0.08 0.11 0.15 0.05 0.11 0.25 0.00 0.00 1.86 0.20
Ours 0.05 0.18 0.55 0.61 0.15 0.06 0.33 0.34 0.09 0.30 9.38 0.41

Geometry

CD-s DTA 0.18 0.60 0.32 4.66 0.40 2.65 2.19 4.80 0.55 4.69 2.53 10.86
Ours 0.33 0.90 2.96 2.06 0.34 1.68 1.02 6.17 0.69 2.96 37.01 50.12

CD-d DTA 0.15 0.27 0.16 0.47 0.41 2.27 1.34 0.36 1.50 0.37 1.14 26.46
Ours 0.32 0.59 6.23 0.80 0.41 1.14 0.90 0.17 4.75 0.71 43.00 730.45

CD-w DTA 0.27 0.70 0.35 4.18 0.43 2.19 1.18 4.74 0.36 3.99 2.19 9.33
Ours 0.36 0.85 0.87 1.91 0.33 1.42 0.93 5.64 0.34 2.09 13.25 55.57

Table 1. The results on the PARIS dataset, encompassing both synthetic and real data, are presented. We conducted a comparison with the
DTA [8] method by examining both the aspects of motion and geometry.

PSNR-b

w/o arap 39.56

PSNR-e

w/o arap 39.54
w/o geo 37.62 w/o geo 37.64
w/o bal 40.23 w/o bal 38.92

ours 39.83 ours 39.82

SSIM-b

w/o arap 0.966

SSIM-e

w/o arap 0.963
w/o geo 0.972 w/o geo 0.969
w/o bal 0.989 w/o bal 0.965

ours 0.989 ours 0.989

LPIPS-b

w/o arap 0.035

LPIPS-e

w/o arap 0.037
w/o geo 0.036 w/o geo 0.035
w/o bal 0.031 w/o bal 0.032

ours 0.032 ours 0.032

Table 2. Visual results of the ablation studies. ”w/o bal” repre-
sents the results without loss balance in joint optimization step;
”w/o geo” is the results without Chamfer distance loss in motion
parameter step; ””w/o arap” is the results without ARAP loss.

We also added the DeformGS [9], an excellent and pioneer-
ing 4D Gaussian work, for visual comparison. Due to the
sparsity of the input temporal states, DeformGS can only
reconstruct the appearance of the two input states with rela-
tive accuracy. However, it lacks prior knowledge of articu-
lated motion and thus cannot infer the actual transformation
process between the two states. PARIS also struggles to
accurately estimate motion parameters for certain objects.
Even when the segmentation results are close to correct, the
motion process still deviates from the actual outcome.

Figure 5 further illustrates the depth of our reconstruc-
tion results. The detailed accuracy of the depth highlights
the precision of our geometric reconstruction, which is ex-
ceptionally beneficial for the task of synthesizing novel
views and other downstream applications.

Analysis on visual quality. Table ?? presents the com-
parisons on visualization quality. Our approach outper-

forms PARIS across all evaluated metrics. This is partly
due to the fact that the appearance model of PARIS is con-
structed based on the Instant-NGP [5] method, which, even
with accurate motion estimation, has a visual quality ceiling
that is lower than that of 3D-GS.

Analysis on PARIS real-world results. The performance
drop on the two real-world objects provided by PARIS is
mainly due to the inaccurate annotations on the camera pose
and object masks. Learning-based methods like Ditto are
less sensitive to such noisy input. However, our method
consistently obtains better results compared to PARIS, in-
cluding the extra five real-world objects we collected.

1.4. Comparisons to DTA
Table 1 shows the comparisons between our method and
DTA [8]. We directly utilized the data shown in the DTA
paper. From the results, it is evident that even without the
input of depth values, our method outperforms DTA in es-
timating object motion across multiple metrics. However,
due to DTA’s incorporation of depth data and image feature
extraction as priors, it achieves commendable results when
dealing with real-world object data that contain significant
noise. Additionally, in terms of algorithmic efficiency, our
approach achieves similar reconstruction results in approx-
imately one-third of the time required by DTA.

1.5. More ablation studies
Initial mask threshold. When optimizing motion pa-
rameters, a lower threshold as 0.1, is effective for most ob-
jects. However, when the moving parts of an object possess
high symmetry, and half of the object is obscured from view
in the initial state, optimization of motion may converge to
a local optimum, as shown in Fig. 6. At this point, the
higher threshold we set will come into effect, increasing the
discrepancy between the local optimum and the true state,
thereby achieving better optimization results.



Start State End State Ours PARIS Vanilla

Figure 1. Qualitative results of part segmentation and motion esti-
mation for some of the synthetic objects derived from the PARIS
dataset.

Design of objective function. To further justify the de-
sign of our objective functions, we conducted several abla-
tion studies, including: “w/o arap” for the results without
ARAP loss during deformation prediction, “w/o geo” for
results without Chamfer distance loss in motion parameter
step, and “w/o bal” for the results without loss balance in
joint optimization step. Experiments show that by adding
those designs, the results are consistently better. The quan-
titative results are reported in the supplementary material.

Tab. 2 shows the results of our ablation study. It should
be noted that for many objects with few changes between
two states, the original loss is already sufficient, and these
losses will not provide much assistance

Table 3. Average performance on the PARIS dataset.

Simulation Real-world
default w/ depth switch default w/ depth switch

Ang Err 0.28 0.25 0.29 23.47 23.95 23.51
Pos Err 0.00 0.00 0.00 0.05 0.08 0.06

Geo Dist 0.27 0.20 0.27 4.90 3.29 4.95
CD-s 1.91 1.55 1.91 43.57 42.55 43.59
CD-d 1.60 1.41 1.60 386.73 394.62 386.85
CD-w 1.47 1.62 1.48 34.41 33.35 34.56

The switch of Start & End States. Switching the state
order will not affect the results of our method, as shown in
Table 3 with the setting denoted as swith. In fact, the results
provided in the paper are obtained with a random order.

Injest depth as input. We tried injesting depth in a
straightforward manner, where we directly use the depth
maps for additional supervision to 3DGS’s depth rendering
output, and the results are shown in Table3 with the set-
ting denoted as w/ depth. We can see that there is only
slight improvement in this naive implementation, and we
find that many existing RGB-D 3DGS methods could be
employed to further enhance the performance, such as com-
bining RGB-D information with 2D-GS to obtain better ge-
ometry accuracy, which we will leave for future work.

2. Limitation analysis & future works
Our method has certain limitations, which also point the
way for future work. Our methodology may not consis-
tently deliver satisfactory outcomes for every pair of ob-
ject states. This is particularly true in scenarios such as:
when the movable part is disproportionately small relative
to the entire object; or when the color of the movable part
is closely similar to the object’s other parts. When recon-
structing real-world objects, our method is also susceptible
to the interference of coordinate alignment and lighting con-
ditions.

Two failure cases are shown in Figure 7. Besides, when
there is a deviation in the world coordinates of the two
states, the deviated part can be directly estimated as the
object’s movement, which poses a substantial challenge to
our method, especially when dealing with real-world ob-
jects with inaccurate camera pose estimation. In the recon-
struction of real objects, significant differences in lighting
between corresponding parts of the object in two states can
also have a substantial negative impact on the outcome. Our
method currently can only handle objects with a single mov-
able part at one time, and the type of joint is limited to pris-
matic and revolute.

A promising direction for future research is the devel-
opment of self-supervised techniques to accurately esti-
mate the unknown quantity of movable components within
an object. Additionally, there is a significant opportu-
nity to advance our reconstruction capabilities to handle



Start State End State Results
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Figure 2. Illustration of the effects of applying our method and the PARIS algorithm to our dataset. It includes the appearance at the
beginning and end states, along with part segmentation and motion estimation for both methods.

more intricate mechanical configurations of articulated ob-
jects.
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Real-World Object Start State End State Results
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Figure 3. Illustration of applying our method and the PARIS algorithm to real-world objects.
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Figure 4. Illustration of unseen states inference. It reveals transformation between two known states while ours yields consistent visual
outcomes.



Figure 5. Depth visualization. We rendered the depth maps of the
synthetic objects from Shape2Motion [7] dataset.

Ground Truth threshold=0.1 threshold=0.3

Figure 6. Illustration of our method using different thresholds
when optimizing the motion parameters.

Ground Truth Appearance Motion & Segmentation

Figure 7. On the left, the basket, due to the small volume of move-
ment, under the influence of DeformNet, its Gaussian is directly
obscured into the static part, and the overall loss did not decrease
significantly. The subsequent optimization process continued with
this erroneous result, leading to an incorrect outcome. On the
right, the window, due to the overlapping window frame positions
with similar colors, resulted in low distinctiveness, thus learning
an erroneous segmentation result.
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