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1 METHOD DETAILS
Details in reconstruction task generation. Suppose there are two

different viewpoint V1 = {𝒑1, 𝒅1} and V2 = {𝒑2, 𝒅2}, where 𝒑1,
𝒑2 are the positions of viewpoints, and 𝒅1, 𝒅2 are the directions of
viewpoints. Then we compute the distance bewteenV1 andV2:

𝐷 (V1,V2) = | |𝒑1 − 𝒑2 | |2 + ||𝒅1 − 𝒅2 | |2 . (1)

indicating the differences between two viewpoints both on position
and direction. We define the distance threshold 𝐷0 = 1.414 for
viewpoints, We also define that two viewpoints V1 and V2 are
neighboring viewpoints, if 𝐷 (V1,V2) < 𝐷0.

Details in MDMTSP solver. In our modified MDMTSP problem,
we attempt to search for the optimal assignment of the tasks to the
robots aiming at minimizing the distance term and capacity term.
These two terms are mentioned in section 5.1. To solve this complex
problem which includes both the ownership and the sequences
of the tasks, we adopt the clustering-while-assigning method to
approximate the optimal solution iteratively.
Since each robot processes only one category of tasks in one

assignment, we need to decide the scanning mode of the robots
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ALGORITHM 1: Simulated annealing algorithm

Input: Current weighted graph G;
Information of robots: R = {R1, ..., R𝑅 };

Initial duality tuple for robots: C =

{
C𝑟 | C𝑟 =

(
R𝑟 , {T𝑟1 , ...}

)}
;

Time threshold𝑇 ;
Initial time 𝑡0;
Annealing rate 𝑟 ;
Output: Final duality tuple for each robot: C = {C1, ..., C𝑅 }
𝑡 ← 𝑡0;
𝑐 ← ComputeAssignmentCost(C) ;
while 𝑡 ≤ 𝑇 do

𝑡 ← 𝑡 · 𝑟 ;
R∗ ← RandomTurbulant(R) ;
C∗ ← AssignmentOptimizer(R∗,G) ;
𝑐∗ ← ComputeAssignmentCost(C∗,G) ;
if 𝑒 (𝑐−𝑐

∗ )/𝑡 > Random(0.0,1.0) then
R ← R∗;
C ← C∗;
𝑐 ← 𝑐∗;

end
end

in the assignment first. To achieve this, we add another iteration
process via the simulated annealingmethod to optimize the scanning
modes. Algorithm 1 shows the optimization details.
In the AssignmentOptimizer of Algorithm 1, we perform a soft

clusteringmethodwithmodifiedGaussMixtureModel (GMM), where
the capacity term is multiplied by each robot’s likelihood to consider
the unprocessed tasks. After each optimization step, we calculate
the assignment cost of the new cluster and decide whether to update
the states via the comparisons of the candidate assignment cost.

The situation when a robot finishes all possible tasks nearby and
is ready to move to the new area at a distance is also considered in
the constrained parameters. Once a robot has processed more than
two tasks and has longer than 15m to travel, the rest of the tasks
will be ignored.

2 IMPLEMENTATION DETAILS
Semantic reconstruction. We choose Voxblox++ [Grinvald et al.

2019] as the basic framework of our reconstruction module. It is
a lightweight 3D reconstruction framework, which could provide
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the data needed for our strategy. It presents an approach to incre-
mentally building geometrically accurate volumetric maps of the
environment that additionally contain information about the in-
dividual object instances observed in the scene. Benefit from this
lightweight framework, we could understand objects in the real
world at both geometric and semantic levels. The source version of
this framework is designed for a single camera, making it unable to
receive and process data from multiple cameras simultaneously.

Parameter setting. In the simulation environment, the moving
speed is 0.5m/s for the explorer, and 0.2m/s for the reconstructor
when moving between task views over each object. We use the dy-
namic spatial resolution of the occupancy grid. Hence, the resolution
changes due to the expansion of the unknown map.

For exploration tasks, we set the number of the exploration tasks
as 𝑇 = 4𝑅, where 𝑅 is the number of the robots. The range of select-
ing candidate exploration tasks is within 1.5m since the Primesense
Carmine 1.09 has the operation range of 0.3-3m.
To fit the input point cloud size in GR-Net in the reconstruc-

tion task generation process, we downsample each object into 2048
points and output a 16384-point predicted object. Exploration tasks
are set in the fixed height of 1.1m, and reconstruction tasks are
limited to the range of 0.3m to 1.8m on Z-axis.

Implementation of Dong. Since [Dong et al. 2019] does not contain
the object reconstruction procedures, we replace their Voxel Hash-
ing module with voxblox-plus-plus in our method to observe their
reconstruction quality towards the objects. In [Dong et al. 2019]’s
work, the robots share the same identity similar to the explorer.
Moreover, their robots work in the same intervals that only when
all robots finish the tasks, the control center can start to generate
new tasks. The speed of the robots in their method is set as 0.3m/s,
according to the paper.

Treatment of error data. Multi-view inconsistencies in the seg-
mentation and incorrrect prdictions are unavoidable problems in
the field of reconstruction. We overcome these shortcomes using
the same method as the one in Voxblox++, which first reconstructs
the surface of the object based on depth and normal information,
and then selects the best semantic label for every identifiable object
based on voting.

3 MORE RESULTS AND EVALUATIONS

3.1 Scalability analysis
Study on number of robots. The number of the robots is also eval-

uated in our experiments. Knowing that the scanning efficiency of
various robots is strongly related to the scale of the scene and the
complexity of the layout, we deploy the experiments among all the
scenes in our dataset to study the scalability of the method. We
analyze the performance of our method with different numbers of
robots, and Figure 1 shows some meaningful results. We observe
that the scene with large areas needs more robots to have a compa-
rable efficiency. Besides, it is clear that the more robots we use, the
less time consumption our method costs. Note that the time load
balance increases when the scene to be reconstructed is larger, due
to the task assignment occurring more times during the process.
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Fig. 1. Studies with different number of robots.

Table 1. Time cost of some important components of our method. All values
are measured in milliseconds.

Scene Level Small Medium Large
Frontier extraction 4.67 5.14 6.26
Frontier filtration 0.208 0.212 0.217

Frontier view generation 122.8 123.4 125.6
Object view generation 329.6 479.2 525.3

Task assignment 1728.3 1936.6 2162.5

Despite the various scanning efficiency, the reconstruction qual-
ities of all these cases are at the same level, indicating that our
method has the capability of driving multiple robots scanning in
an unknown environment with the robots’ numbers from 3 to 10.
Moreover, when reconstructing in an unknown environment with-
out any prior knowledge, it is difficult to choose a proper number
of robots, but our method can drive various numbers of robots to
accomplish the scanning mission to a similar reconstruction quality
within a reasonable time-consumption and distance-consumption.

Timing. We also counted the time consumption of each compo-
nent in the decision-making process. Table 1 shows the total time
consumption on different level of scenes.
From the results, we can see that with the increase in the scene

scales, the time consumption of the frontier tasks’ generation in-
creases little, and the consumption of the reconstruction sub-tasks’
generation has the computational complexity of 𝑂 (𝑛), where 𝑛 is
the number of the objects discovered. The former is because we
filter the fixed number of the frontier tasks in the scene, which is
irrelevant to the scale of the scene. And the latter is because we
take the same task-extraction procedure to every object discovered
in the scene, which shares a positive correlation to the number of
the objects. Since we adopt an approximation method to compute
the assignment of the tasks, the number of tasks increases as the

ACM Trans. Graph., Vol. 41, No. 6, Article 198. Publication date: December 2022.
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number of objects, and the computational time of assignment is
also 𝑂 (𝑛). Moreover, the final TSP is also 𝑂 (𝑛2𝑙𝑜𝑔(𝑛)) since we use
the approximation method to search for the optimal solution. As a
result, the computational time is roughly proportioned to the objects
in the scene.

Table 2. Details of all scenes we used to evaluate. mp3d means the scene
comes fromMatterport3D dataset, and front3d means the scene comes from
Front3D dataset.

Scene Scene Level Area/𝑚2 #Room #Object
mp3d01 Small 176 19 45
mp3d02 Small 186 29 65
mp3d03 Medium 220 20 24
mp3d04 Medium 288 22 42
mp3d05 Large 328 18 35
mp3d06 Large 350 22 52
front3d01 Small 182 9 40
front3d02 Small 243 6 53
front3d03 Medium 263 11 71
front3d04 Medium 293 12 63
front3d05 Large 318 11 39
front3d06 Large 468 9 61

Table 3. Details of different levels of scenes we used to evaluate. In all of our
experiments, if we don’t give a further specified explanation, the metrics
are the average of the values on all scenes.

Scene Level Area/𝑚2 #Room #Object
Small 196.75 15.75 50.75

Medium 266.00 16.25 50.00
Large 366.00 15.00 46.75
Mean 276.250 15.667 49.167

Table 4. Comparing our method with the work of [Liu et al. 2018] in recon-
struction quality of scene.

method Scene Completeness Scene Accuracy

Small Medium Large Small Medium Large
NBO × 1 71.61 73.32 68.17 0.023 0.022 0.037
NBO × 4 73.83 71.41 71.38 0.020 0.025 0.036
Ours 72.60 73.57 70.25 0.022 0.023 0.034

3.2 Scene-Level evaluation
We also implement the scene-level metrics to evaluate the experi-
ment results. The measurements are:
• Scene Completeness (S-Comp) measured by the percentage of
the covered surface of the entire scene. It’s similar to the way we
calculate the metric O-Comp.
• Scene Accuracy (S-RMS)measured by the average distance error

Table 5. Comparing our method with the work of [Dong et al. 2019] in
reconstruction quality of scene.

method Scene Completeness Scene Accuracy

Small Medium Large Small Medium Large
Dong 64.83 63.83 61.17 0.023 0.033 0.039
Ours 72.60 73.57 70.25 0.022 0.023 0.034

Table 6. Ablation studies in reconstruction quality over twelve virtual scenes
in our dataset. All evaluations are running with 4 robots.

Method S-Comp S-RMS
NoSw[3+1] 70.62 0.0340
NoSw[2+2] 68.92 0.0273
NoSw[1+3] 69.22 0.0213

NoRe 69.01 0.0328
NoEx 63.24 0.0206
NoFlow 71.88 0.0218
Ours 72.14 0.0260

of the reconstructed scene. It’s similar to the way we calculate the
metric O-RMS.

Table 4 shows that both the completeness and the accuracy of the
reconstruction result in [Liu et al. 2018] and our method are similar.
On the other hand, Table 5 shows that the frontier-based method can
cause holes in the reconstruction results, which significantly reduces
the reconstruction quality of the entire scene. These comparisons
show that the reconstruction quality can be improved if the objects
are specifically considered.

Table 6 shows the ablation studies on the reconstruction quality
of the scene.

3.3 Ablation study on energy constrains
No energy constraints (NoCo): We cut off the constraints in Section
5.2 to test the performance of this module. Table 7 shows that if
we consider the energy constraints, all the metrics remain no dis-
cernible differences except the time and distance consumption. With
the energy constraints, the distance of the paths for some robots
can be shorter if necessary, leading to more frequent assignment
procedures of the tasks. Thus the percentage of the waiting time
of robots increases a little, while the distance of the paths between
robots becomes more balanced, which leads to lower distance load
balance. Moreover, since the tasks are assigned more balanced, both
the time and distance consumption are lower than NoCo.

3.4 Ablation study on reconstruction tasks
No reconstruction tasks(NoRT): We remove all reconstruction tasks
and only assign exploration tasks to robots during the scanning
process. Table 7 shows that if reconstruction tasks are considered,
the execution efficiency in our baseline is slightly worse compared
to NoRT. This is because there are more tasks to be finished in our
method, reconstruction quality of both scenes and objects increases
significantly.
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Fig. 2. Three real scenes scanned and reconstructed by our method with objects in different colors.

Table 7. Ablation studies with NoCo and NoRT in reconstruction quality of
objects, reconstruction efficiency, and load balance.

Quality Scene Completeness Scene Accuracy

Small Medium Large Small Medium Large
NoCo 72.62 73.87 70.18 0.021 0.023 0.035
NoRT 65.29 64.12 61.41 0.022 0.031 0.037
Ours 72.60 73.57 70.25 0.022 0.023 0.034

Quality Object Completeness Object Accuracy

Small Medium Large Small Medium Large
NoCo 66.19 72.52 70.01 0.035 0.039 0.034
NoRT 54.28 41.93 40.37 0.059 0.078 0.095
Ours 66.18 72.49 70.03 0.035 0.039 0.033

Efficiency Time Consumption Distance Consumption

Small Medium Large Small Medium Large
NoCo 16.3 21.8 29.0 626.7 757.6 1216.8
NoRT 11.8 17.6 21.8 493.7 529.8 741.1
Ours 14.0 18.9 24.7 536.1 620.7 848.5

Balance Distance Load Balance Time Load Balance

Small Medium Large Small Medium Large
NoCo 0.147 0.182 0.136 0.061 0.078 0.091
NoRT 0.169 0.195 0.214 0.057 0.071 0.079
Ours 0.151 0.200 0.157 0.062 0.082 0.093

3.5 More reality results
Figure 2 shows other real-world reconstruction results. Objects with
different categories are rendered with different colors.
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